反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1
网友回答
B
解析分析:先根据反比例函数y=判断出函数图象所在的象限,再根据x1<x2<0<x3,判断出三点所在的象限,再根据点在各象限坐标的特点及函数在每一象限的增减性解答.
解答:∵反比例函数y=中,k=6>0,∴此反比例函数图象的两个分支在一、三象限;∵x3>0,∴点(x3,y3)在第一象限,y3>0;∵x1<x2<0,∴点(x1,y1),(x2,y2)在第三象限,y随x的增大而减小,故y2<y1,由于x1<0<x3,则(x3,y3)在第一象限,(x1,y1)在第三象限,所以y1<0,y2>0,y1<y2,于是y2<y1<y3.故选B.
点评:本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.