已知平行四边形ABCD,设=,=,点P、Q分别是对角线AC、BD的点,且=,=,试用、分别表示、、.
网友回答
解:连接PQ.
∵点P、Q分别是对角线AC、BD的点,且=,=,
∴点P、Q分别是AO、DO的中点,
∴PQ∥AD∥BC且2PQ=AD=BC,
∴=;
∵=-=-;
∵四边形ABCD是平行四边形,
∴===(-);
∵=+=+,
∴==×=(+).
解析分析:连接PQ,利用三角形AOD的中位线定理和平行四边形ABCD的对边平行且相等的性质推知PQ∥AD∥BC且2PQ=AD=BC;然后根据平面向量的几何意义以及向量的三角形法则解答即可.
点评:本题考查了平面向量的线性运算.把向量同解三角形结合的问题,均属于中等题或难题,应加强平面向量的基本运算的训练,尤其是与三角形综合的问题.