已知函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|(x∈R),且f(a2-3a+2)=f(a-1),则满足条件的所有整数a的和是________.
网友回答
6
解析分析:根据已知中函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|结合函数奇偶性的定义,我们可以求出函数为一个偶函数,则f(a2-3a+2)=f(a-1),可以转化为|a2-3a+2|=|a-1|,又由绝对值的几何意义,我们可得f(0)=f(1)=f(-1),可知a=2也满足要求,进而得到