等腰直角三角形ABC中,∠BAC=90°,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为________cm.

发布时间:2020-08-07 08:04:26

等腰直角三角形ABC中,∠BAC=90°,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为________cm.

网友回答

4
解析分析:利用等腰直角三角形两直角边相等,结合勾股定理解答.

解答:解:作DE⊥BC于E,
因为BD平分∠ABC,根据角平分线上的点到角的两边的距离相等,
设AC=AB=x,则DE=AD=8-x,CD=x-(8-x),
在等腰直角三角形CDE中,根据勾股定理,
2(8-x)2=[x-(8-x)]2
解得x=4,
作BC边上的高AF,
AF=ABsin45°=4×=2×2=4,
则底边BC上的高为4cm.
以上问题属网友观点,不代表本站立场,仅供参考!