如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ

发布时间:2020-08-05 12:16:14

如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使得以C、P、Q为顶点的三角形与△OAB相似?若存在,求出t的值;若不存在,请说明理由.
(4)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

网友回答

解:(1)设抛物线解析式为y=ax2+bx(a≠0),将A.B点坐标代入得出:,
解得:,
故经过O、A、B三点的抛物线解析式为:y=-x2+x.

(2)①当0<t≤2时,重叠部分为△OPQ,过点A作AD⊥x轴于点D,
如图1.
在Rt△AOD中,AD=OD=1,∠AOD=45°.
在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°.
∴OQ=PQ=t.
∴S=S△OPQ=OQ?PQ=×t×t=t2(0<t≤2);
②当2<t≤3时,设PQ交AB于点E,重叠部分为梯形AOPE,
作EF⊥x轴于点F,如图2.∵∠OPQ=∠QOP=45°
∴四边形AOPE是等腰梯形∴AE=DF=t-2.
∴S=S梯形AOPE=(AE+OP)?AD=(t-2+t)×1
=t-1(2<t≤3);
③当3<t<4时,设PQ交AB于点E,交BC于点F,
重叠部分为五边形AOCFE,如图3.
∵B(3,1),OP=t,∴PC=CF=t-3.
∵△PFC和△BEF都是等腰直角三角形
∴BE=BF=1-(t-3)=4-t
∴S=S五边形AOCFE=S梯形OABC-S△BEF,
=(2+3)×1-(4-t)2
=-t2+4t-(3<t<4);

(3)连接QC,OB,
∵AB∥OC,
∴∠BAO+∠AOC=180°,
∵∠AOC=45°,∠OQP=90°,
∴∠QPO=45°,
∵∠QPO+∠QPC=180°,
∴∠BAO=∠QPC,
只要=或者=即可得出以C、P、Q为顶点的三角形与△OAB相似,
得出:3-t=×t?或3-t=×t
解得:t=2或t=;

(4)存在,t1=1,t2=2.
将△OPQ绕着点P顺时针旋转90°,此时Q(t+,),O(t,t)
①当点Q在抛物线上时,=-×(t+)2+×(t+),
解得t=2;
②当点O在抛物线上时,t=-t2+t,
解得:t=1.

解析分析:(1)设出此抛物线的解析式,把A、B两点的坐标代入此解析式求出a、b的值即可;
(2)由与t的取值范围不能确定,故应分三种情况进行讨论,
①当0<t≤2,重叠部分的面积是S△OPQ,过点A作AF⊥x轴于点F,在Rt△OPQ中利用三角形的面积公式及特殊角的三角函数值即可求出其面积;
②当2<t≤3,设PQ交AB于点G,作GH⊥x轴于点H,∠OPQ=∠QOP=45°,则四边形OAGP是等腰梯形,
重叠部分的面积是S梯形OAGP,由梯形的面积公式即可求解;
③当3<t<4,设PQ与AB交于点M,交BC于点N,重叠部分的面积是S五边形OAMNC.
因为△PNC和△BMN都是等腰直角三角形,所以重叠部分的面积是S五边形OAMNC=S梯形OABC-S△BMN,进而可求出
以上问题属网友观点,不代表本站立场,仅供参考!