如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A、C、B′三点共线,那么旋转角度的大小为A.45°B.90°C.120°D.135°
网友回答
D
解析分析:根据等腰直角三角形的性质得∠ACB=45°,再根据旋转的性质得∠A′CB′=∠ACB=45°,∠ACA′等于旋转角,由于点A、C、B′三点共线,则∠ACB′=180°,于是∠ACA′=180°-∠A′CB′=135°.
解答:∵三角板ABC为等腰三角形,
∴∠ACB=45°,
∵在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A、C、B′三点共线,
∴∠A′CB′=∠ACB=45°,∠ACA′等于旋转角,
∵点A、C、B′三点共线,
∴∠ACB′=180°,
∴∠ACA′=180°-∠A′CB′=135°,
即旋转角为135°.
故选D.
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质.