如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E

发布时间:2020-08-08 14:59:13

如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.
(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;
(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由;
(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.

网友回答

解:(1)∠ECF不变为60°.
理由如下:
∵△ABC和△ADC都是边长相等的等边三角形,
∴BC=AC=CD,∠B=∠DAC=60°,
又∵E、F两点运动时间、速度相等,
∴BE=AF,
∴△BCE≌△ACF,
∴∠ECB=∠FCA.
所以∠ECF=∠FCA+∠ACE=∠ECB+∠ACE=∠BCA=60°;

(2)不变化.理由如下:
∵四边形AECF的面积=△AFC的面积+△AEC的面积,△BCE≌△ACF,
∴△AEC的面积+△BEC的面积=△ABC的面积;

(3)证明:∵∠FCD+∠DFC=120°,∠AFE+∠DFC=120°,
∴∠AFE=∠FCD,
所以∠ACE=∠FCD=∠AFE.
解析分析:(1)根据SAS证明△BCE≌△ACF,得到∠ECB=∠FCA,从而证明结论;
(2)结合(1)中证明的全等三角形,即可发现以点A、E、C、F为顶点的四边形的面积即为△ABC的面积;
(3)根据等边三角形的判定可以证明△ECF是等边三角形,再进一步根据平角定义,得到∠AFE+∠DFC=120°,则∠AFE=∠FCD,从而求解.

点评:此题综合运用了全等三角形的判定和性质、等边三角形的判定和性质等.注意:在证明两个角相等的时候,要善于发现它们和一个公共角的和相等.
以上问题属网友观点,不代表本站立场,仅供参考!