定义在R上的函数y=f(x),它同时具有下列性质:①对任何x∈R均有f(x3)=[f(x)]3;②对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2).则f(0

发布时间:2020-08-07 17:08:24

定义在R上的函数y=f(x),它同时具有下列性质:
①对任何x∈R均有f(x3)=[f(x)]3;②对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2).
则f(0)+f(-1)+f(1)=________.

网友回答

0
解析分析:首先根据题干条件解得f(0),f(-1)和f(-1)的值,然后根据对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2)可以判断f(0)、f(-1)和f(1)不能相等,据此解得
以上问题属网友观点,不代表本站立场,仅供参考!