如图,将?ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A等于A.40°B.50°C.60°D.65

发布时间:2020-08-11 20:33:38

如图,将?ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A等于A.40°B.50°C.60°D.65°

网友回答

D
解析分析:由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A,又由平角的定义,根据∠AMF=50°,求得∠DMF的度数,然后可求得∠A的度数.

解答:∵四边形ABCD是平行四边形,
∴AB∥CD,
根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,
∴AB∥CD∥MN,
∴∠DMN=∠FMN=∠A,
∵∠AMF=50°,
∴∠DMF=180°-∠AMF=130°,
∴∠FMN=∠DMN=∠A=65°,
故选D.

点评:此题考查了平行四边形的性质、平行线的性质与折叠的性质,注意数形结合思想的应用以及折叠中的对应关系,难度适中.
以上问题属网友观点,不代表本站立场,仅供参考!