如图,等腰梯形ABCD中,AB∥CD,AB=4cm,CD=10cm,∠C=60°.(1)求AD的长;(2)若动点P从点C出发沿CD方向向终点D运动,在P点运动的过程中

发布时间:2020-08-09 16:49:06

如图,等腰梯形ABCD中,AB∥CD,AB=4cm,CD=10cm,∠C=60°.
(1)求AD的长;
(2)若动点P从点C出发沿CD方向向终点D运动,在P点运动的过程中,△ABP的面积改变了吗?若改变,请说明理由;若没有改变,请求出△ABP的面积.
(3)在(2)的条件下,过点B作BH⊥AP,垂足为H,若BH=3cm,求PA的长.

网友回答

解:(1)过点A作AE⊥CD于点E,
∵梯形ABCD是等腰梯形,AB=4cm,CD=10cm,
∴DE===3cm,
在Rt△ADE中,
∵DE=3cm,∠C=60°,
∴AD===6cm;

(2)没变.
∵点P无论运动到何点,△ABP都是以AB为底、以AE为高的三角形,
∴△ABP的面积没改变;
∵AB=4cm,AE=DE?tan60°=3×=3,
∴S△ABP=AB?AE=×4×3=6;

(3)∵在Rt△ADE中,DE=3cm,∠C=60°,
∴AE=DE?tan60°=3×=3,
∴S△ABP=AB?AE=PA?BH,即4×3=PA×3,解得PA=4cm.
解析分析:(1)过点A作AE⊥CD于点E,由等腰三角形的性质可求出DE的长,再由锐角三角函数的定义求出AD的长即可;
(2)根据同底等高的三角形面积相等可直接得出结论;
(3)由S△ABP=AB?AE=PA?BH即可求出PA的长.

点评:本题考查的是等腰三角形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!