如图,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于A.45°B.50°C.55°D.60°

发布时间:2020-08-10 03:59:10

如图,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于A.45°B.50°C.55°D.60°

网友回答

C
解析分析:过B作BF∥MN交AD于F,则∠AFB=∠ANM,根据正方形的性质得出∠A=∠EBC=90°,AB=BC,AD∥BC,推出四边形BFNM是平行四边形,得出BF=MN=CE,证Rt△ABF≌Rt△BCE,推出∠AFB=∠ECB即可.

解答:
过B作BF∥MN交AD于F,
则∠AFB=∠ANM,
∵四边形ABCD是正方形,
∴∠A=∠EBC=90°,AB=BC,AD∥BC,
∴FN∥BM,BE∥MN,
∴四边形BFNM是平行四边形,
∴BF=MN,
∵CE=MN,
∴CE=BF,
在Rt△ABF和Rt△BCE中

∴Rt△ABF≌Rt△BCE(HL),
∴∠AFB=∠ECB=35°,
∴∠ANM=∠AFB=35°,
故选C.

点评:本题考查了平行四边形的性质和判定,全等三角形的性质和判定,正方形的性质的应用,主要考查学生的推理能力.
以上问题属网友观点,不代表本站立场,仅供参考!