如图所示,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,求证:△ABC的外心O与点A、P、Q四点共圆.

发布时间:2020-07-30 09:26:25

如图所示,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,
求证:△ABC的外心O与点A、P、Q四点共圆.

网友回答

证明:作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,
∵O是△ABC的外心,
∴OE=OF,OB=OA,
由勾股定理得:BE2=OB2-OE2,AF2=OA2-OF2,
∴BE=AF,
∵AP=BQ,
∴PF=QE,
∵OE⊥AB,OF⊥AC
∴∠OFP=∠OEQ=90°,
∴Rt△OPF≌Rt△OQE,
∴∠P=∠Q,
∴O、A、P、Q四点共圆.
即:△ABC的外心O与点A、P、Q四点共圆.
解析分析:先作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,证出BE=AF,OE=OF,再证Rt△OPF≌Rt△OQE,得到∠P=∠Q即可得到
以上问题属网友观点,不代表本站立场,仅供参考!