已知:如图,△ABC中,∠ACB>∠ABC,记∠ACB-∠ABC=α,AD为△ABC的角平分线,M为DC上一点,ME与AD所在直线垂直,垂足为E.(1)用α的代数式表

发布时间:2020-08-12 10:30:43

已知:如图,△ABC中,∠ACB>∠ABC,记∠ACB-∠ABC=α,AD为△ABC的角平分线,M为DC上一点,ME与AD所在直线垂直,垂足为E.
(1)用α的代数式表示∠DME的值;
(2)若点M在射线BC上运动(不与点D重合),其它条件不变,∠DME的大小是否随点M位置的变化而变化?请画出图形,给出你的结论,并说明理由.

网友回答

解:(1)解法一:作直线EM交AB于点F,交AC的延长线于点G.(见图1)
∵AD平分∠BAC,
∴∠1=∠2.
∵ME⊥AD,
∴∠AEF=∠AEG=90°
∴∠3=∠G.
∵∠3=∠B+∠DME,
∴∠ACB=∠G+∠GMC=∠G+∠DME,
∴∠B+∠DME=∠ACB-∠DME.
∴∠DME=(∠ACB-∠B)=;
解法二:如图2(不添加辅助线),
∵AD平分∠BAC,
∴∠1=∠2.
∵ME⊥AD,
∴∠DEM=90°,∠ADC+∠DME=90°.
∵∠ADB=∠2+∠C=90°+∠DME,
∴∠DME=∠2+∠C-90°.
∵∠ADC=∠1+∠B,
∴∠1=∠ADC-∠B.
∴∠DME=∠1+∠C-90°=(∠ADC-∠B)+∠C-90°
=∠C-∠B-(90°-∠ADC)=∠C-∠B-∠DME
∴∠DME=(∠C-∠B)=;

(2)如图3和图4,点M在射线BC上运动(不与点D重合)时,∠DME的大小不变.(点M运动到点B和点C时同理)
证法一:设点M运动到M′,过点M′作M′E′⊥AD于点E′
∵M′E′⊥AD,
∴ME∥M′E′.
∴∠DM′E′=∠DME=.
证法二:图3与图4中分别与第(1)问同理可证.
解析分析:(1)作直线EM交AB于点F,交AC的延长线于点G,由角平分线的性质得出∠1=∠2,根据ME⊥AD得出∠3=∠G,再由三角形外角的性质即可得出结论;
(2)设点M运动到M′,过点M′作M′E′⊥AD于点E′,再根据平行线的性质即可得出结论.

点评:本题考查的是三角形内角和定理及三角形外角的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!