如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=A.45°B.30°C.60°D.55°
网友回答
A
解析分析:先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.
解答:设∠BAE=x°,
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∵AE=AB,
∴AB=AE=AD,
∴∠ABE=∠AEB=(180°-∠BAE)=90°-x°,
∠DAE=90°-x°,
∠AED=∠ADE=(180°-∠DAE)=[180°-(90°-x°)]=45°+x°,
∴∠BEF=180°-∠AEB-∠AED
=180°-(90°-x°)-(45°+x°)
=45°.
答:∠BEF的度数是45°.
点评:本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.