如图,AB=2AC,BD=2AE,又BD∥AC,点B,A,E在同一条直线上.
(1)求证:△ABD∽△CAE;
(2)如果AC=BD,AD=BD,设BD=m,求BC的长.
网友回答
证明:(1)∵BD∥AC,点B,A,E在同一条直线上,
∴∠DBA=∠CAE,??
又∵==2,
∴△ABD∽△CAE;
(2)∵AB=2AC=2BD=2m,AD=BD=,
∴AD2+BD2=3m2+m2=4m2=AB2,
∴∠D=90°
∵△ABD∽△CAE,
∴∠E=∠D=90°,
∵AE=BD=,EC=AD=,AB=2BD=2m,
∴在Rt△BCE中,BC2=(AB+AE)2+EC2=(2m+m)2+(m)2=7m2,
∴BC=m.
解析分析:(1)由BD∥AC,点B,A,E在同一条直线上可得出∠DBA=∠CAE,再由AB=2AC,BD=2AE即可得出结论;
(2)由AC=BD,AD=BD,BD=m可知AB=2AC=2BD=2m,AD=BD=,在RtABD中利用勾股定理可用m表示出AB的值,由(1)中△ABD∽△CAE可知∠E=90°,进而用m表示出AE、CE的长,再利用勾股定理即可求出BC的长.
点评:本题考查的是相似三角形的判定与性质及勾股定理,根据题意判断出△ABD∽△CAE,再根据相似三角形的对应边成比例用m表示出AE、AB、CE的长是解答此题的关键.