如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:(1)AG=AD;(2)DF=EF

发布时间:2020-08-05 16:25:57

如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:
(1)AG=AD;
(2)DF=EF;
(3)S△DGF=S△ADG+S△ECF.

网友回答

证明:(1)∵△ABC是等边三角形,
∴∠A=60°,
∵DG⊥AC,
∴∠AGD=90°,∠ADG=30°,
∴AG=AD;

(2)过点D作DH∥BC交AC于点H,
∴∠ADH=∠B,∠AHD=∠ACB,∠FDH=∠E,
∵△ABC是等边三角形,
∴∠B=∠ACB=∠A=60°,
∴∠A=∠ADH=∠AHD=60°,
∴△ADH是等边三角形,
∴DH=AD,
∵AD=CE,
∴DH=CE,
在△DHF和△ECF中,

∴△DHF≌△ECF(AAS),
∴DF=EF;

(3)∵△ABC是等边三角形,DG⊥AC,
∴AG=GH,
∴S△ADG=S△HDG,
∵△DHF≌△ECF,
∴S△DHF=S△ECF,
∴S△DGF=S△DGH+S△DHF=S△ADG+S△ECF.
解析分析:(1)由等边△ABC,DG⊥AC,可求得∠AGD=90°,∠ADG=30°,然后根据直角三角形中,30°角所对的直角边等于斜边的一半,即可证得AG=AD;
(2)首先过点D作DH∥BC交AC于点H,易证得△ADH是等边三角形,又由CE=DA,可利用AAS证得△DHF≌△ECF,继而可得DF=EF;
(3)由△ABC是等边三角形,DG⊥AC,可得AG=GH,即可得S△ADG=S△HDG,又由△DHF≌△ECF,即可证得S△DGF=S△ADG+S△ECF.

点评:此题考查了等边三角形的判定与性质、全等三角形的判定与性质以及含30°直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
以上问题属网友观点,不代表本站立场,仅供参考!