已知圆锥的底面半径为3cm,母线长为9cm,C为母线PB的中点,在圆锥的侧面上,从A到C的最短距离是________.
网友回答
cm
解析分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.
解答::解:圆锥的底面周长是6π,则6π=,
∴n=120°,
即圆锥侧面展开图的圆心角是120°,
∴∠APB=60°,
∵PA=PB,
∴△PAB是等边三角形,
∵C是PB中点,
∴AC⊥PB,
∴∠ACP=90°,
∵在圆锥侧面展开图中AP=9,PC=4.5,
∴在圆锥侧面展开图中AC==
最短距离是cm.
故