如图,已知Rt△ABC,∠ABC=90°.
(1)根据下列语句作图并保留作图痕迹:作Rt△ABC的外接圆⊙O,过点A作⊙O的切线PA与AB的垂直平分线交于点P.
(2)连接PB,求证:PB是⊙O的切线;
(3)已知PA=AB=,求线段PA、PB与弧AB围成的图形的面积.
网友回答
(1)解:如图所示:
(2)证明:∵点P、O在AB垂直平分线上,
∴PA=PB,AO=BO,
∴∠PAB=∠PBA,
∠OAB=∠OBA,
∵PA是⊙O的切线,
∴∠OAP=90°,
∴∠OAB+∠BAP=∠OBA+∠PBA=90°,
∴OB⊥PB,
∴PB是⊙O切线;
(3)解:∵PA,PB都是⊙O的切线,
∴PA=PB,
∵PA=AB=,
∴PA=AB=PB,
∴△PAB是等边三角形,
∴∠PAD=60°,
∴∠OAD=30°,
∴r=1,∠AOB=60°,∠AOB=120°,
∴S四边形AOBP=×1××2=,
S扇形AOB=π,
所求图形的面积为(-π)平方厘米.
解析分析:(1)利用直角三角形外接圆的性质,直接找到斜边中点求出即可;
(2)利用切线的性质与判定,得出∠OAB+∠BAP=∠OBA+∠PBA=90°,即可得出