已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD.
(1)如图1,当点P在线段OC上时,求证:OP=CD;
(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;
(3)如图2,抛物线y=-x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形?若存在,请求出t的值;若不存在,请说明理由.
网友回答
(1)证明:∵OD⊥AH,
∴∠OAP=∠DAC=90°-∠AOD;
正方形OABC中,OA=OC=4,∠AOP=∠OCD=90°,即:
∵,
∴△AOP≌△OCD
∴OP=CD.
(2)解:①点P在x轴负半轴上时,P(t,0),且t<0,如图①;
∵在Rt△AOP中,OH⊥AP,
∴∠POH=∠PAO=90°-∠APO;
又∵∠POH=∠COD,
∴∠COD=∠PAO;
在△AOP与△OCD中,
∵,
∴△AOP≌△OCD;
∴OP=CD=-t,则:BD=BC+CD=4-t;
若△AOP与以A、B、D为顶点的三角形相似,则有:
=,得:=
解得:t=2-2或t=2+2(正值舍去);
②当点P在线段OC上时,P(t,0),0<t≤4,如图②;
因为OP<OA、BD<AB、OA=AB,
若△AOP与以A、B、D为顶点的三角形相似,那么有:=,所以OP=BD,即:
t=4-t,t=2;
③当点P在点C右侧时,P(t,0),t>4,如图③;
同①可求得t=2+2;
综上,t1=2,t2=,t3=.
(3)解:假设存在符合条件的点Q,分两种情况讨论:
①PC为平行四边形的对角线,则QP∥CD,且QP=CD;
若P(t,0)、D(4,t),则Q(t,-t),代入抛物线y=-x2+x+4中,得:
-t2+t+4=-t,即:t2-10t-24=0,
解得:t1=-2,t2=12;
②PC为平行四边形的边,则DQ∥PC,且AD=PC;
若P(t,0)、D(4,t),则 PC=QD=|t-4|,Q(t,t)或(8-t,t);
Q(t,t)时,t=-t2+t+4,即:t2+2t-24=0,
解得 t1=4(舍)、t2=-6;
Q(8-t,t)时,t=-(8-t)2+(8-t)+4,即:t2-6t+8=0,
解得 t1=4(舍)、t2=2.
综上可知,t1=2,t2=12,t3=-6,t4=-2.
∴存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形.
解析分析:(1)证OP=CD,可以证明它们所在的三角形全等,即证明:△AOP≌△OCD;已知的条件有:∠AOP=∠OCD=90°,OA=OC=4,只需再找出一组对应角相等即可,通过图示可以发现∠OAP、∠HAP是同角的余角,这两个角相等,那么证明三角形全等的全部条件都已得出,则结论可证.(2)点P在x轴上运动,那么就需分三种情况讨论:①点P在x轴负半轴上;可以延续(1)的解题思路,先证明△AOP、△OCD全等,那么得到的条件是OP=CD,然后用t表示OP、BD的长,再根据给出的相似三角形得到的比例线段,列等式求出此时t的值,要注意t的正负值的判断;②点P在线段OC上时;由于OP、CD都小于等于正方形的边长(即OA、AB),所以只有OP=BD时,给出的两个三角形才有可能相似(此时是全等),可据此求出t的值;③点P在点C的右侧时;方法同①.(3)这道题要分两种情况讨论:①线段PC为平行四边形的对角线,那么点Q、D关于PC的中点对称,即两点的纵坐标互为相反数,而QP∥CD,即Q、P的横坐标相同,那么先用t表示出Q点的坐标,代入抛物线的解析式中,即可确定t的值;②线段PC为平行四边形的边;先用t表示出PC的长,把点D向左或向右平移PC长个单位就能表达出点Q的坐标,代入抛物线解析式后即可得到t的值.
点评:此题是二次函数与几何的综合题,主要涉及了正方形的性质、全等三角形与相似三角形的判定和性质、平行四边形的特点等重点知识;题目解题的思路并不复杂,但难度在于涉及的情况太多,需要分情况逐一进行讨论,容易漏解.