如图,点P为正△ABC内一点,∠APB=125°,∠BPC=100°,则以AP,BP,CP为边长的三角形各内角的度数为________.

发布时间:2020-08-06 10:36:38

如图,点P为正△ABC内一点,∠APB=125°,∠BPC=100°,则以AP,BP,CP为边长的三角形各内角的度数为________.

网友回答

75°,65°,40°

解析分析:△APC绕点A顺时针旋转60°得△AQB,可以证明△APQ是等边三角形则QP=AP,则△QBP就是以AP,BP,CP三边为边的三角形,据此即可求解.

解答:解:将△APC绕点A顺时针旋转60°得△AQB,则△AQB≌△APC,
∴BQ=CP,AQ=AP,
∵∠1+∠3=60°,
∴△APQ是等边三角形,
∴QP=AP,
∴△QBP就是以AP,BP,CP三边为边的三角形.
∵∠APC=360°-∠APB-∠BPC=135°,
∴∠6=∠APB-∠5=65°,
∵∠AQB=∠APC=135°,
∴∠7=∠AQB-∠4=75°,
∴∠QBP=180°-∠6-∠7=40°,
∴以AP,BP,CP为边的三角形的三内角的度数分别为75°,65°,40°.
以上问题属网友观点,不代表本站立场,仅供参考!