已知二次函数图象的顶点坐标为M(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的解析

发布时间:2020-08-05 06:11:15

已知二次函数图象的顶点坐标为M(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.
(1)求m的值及这个二次函数的解析式;
(2)在x轴上找一点Q,使△QAB的周长最小,并求出此时Q点坐标;
(3)若P(a,0)是x轴上的一个动点,过P作x轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①设线段DE的长为h,当0<a<3时,求h与a之间的函数关系式;
②若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

网友回答

解:(1)设抛物线的解析式为y=a(x-1)2,
∵点A(3,4)在抛物线上,则4=a(3-1)2,
解得a=1,
∴抛物线的解析式为y=(x-1)2
∵点A(3,4)也在直线y=x+m,即4=3+m,
解得m=1;

(2)直线y=x+1与y轴的交点B的坐标为B(0,1),
B点关于x轴的对称点B′点的坐标为B′(0,-1),
设直线AB′的解析式为y=kx+b,
将A、B′两点坐标代入y=kx+b,
解得k=,b=-1,
∴设直线AB的解析式为y=x-1,
当A、Q、B′三点在一条直线上时,
AQ+BQ的值最小,即△QAB的周长最小,
Q点即为直线AB′与x轴的交点.
Q点坐标为

(3)①已知P点坐标为P(a,0),则E点坐标为E(a,a2-2a+1),D点坐标为D(a,a+1),
h=DE=yD-yE=a+1-(a2-2a+1)=-a2+3a,
∴h与a之间的函数关系式为h=-a2+3a(0<a<3)

②存在一点P,使以M、N、D、E为顶点的四边形是平行四边形
理由是∵M(1,0),
∴把x=1代入y=x+1得:y=2,
即N(1,2),
∴MN=2,
要使四边形NMED是平行四边形,必须DE=MN=2,
由①知DE=|-a2+3a|,
∴2=|-a2+3a|,
解得:a1=2,a2=1,a3=,a4=,
∴(2,0),(1,0)(因为和M重合,舍去)(,0),(,0)
∴P的坐标是(2,0),(,0),(,0).

解析分析:(1)将A点坐标分别代入抛物线的直线,便可求出抛物线的解析式和m的值;
(2)使△QAB的周长最小,即是求AQ+BQ的值最小,作出B点关于x轴的对称点B′,当A、Q、B′三点在一条直线上时,△QAB的周长最小;
(3)①根据P点坐标分别求出DE两点坐标,便可求出h与a之间的函数关系式;
②存在,P点坐标为(,0),(,0).

点评:本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和三角形的性质等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!