如图,设半径为1的半圆⊙O,直径AB,C、D为半圆上的两点,P点是AB上一动点,若AC的度数为
96°,BD的度36°,则PC+PD的最小值是________.
网友回答
解析分析:要求PC+PD的最小值,应先确定点P的位置.作点D关于AB的对称点E,连接CE交AB于点P,则P即是所求作的点,且PC+PD=CE.
根据作法知弧CE的度数是120°,即∠COE=120°,作OF⊥CE于F;
在Rt△OCF中,∠OCF=30°,OC=1,即可求出CF和CE的长,也就求出了PC+PD的最小值.
解答:解:设点D关于AB的对称点为E,连接CE交AB于P,则此时PC+PD的值最小,且PC+PD=PC+PE=CE.连接OC、OE;
∵弧AC的度数为96°,弧BD的度数为36°;
∴弧CD的度数为48°;
∴弧CBE的度数为120°,即∠COE=120°;
过O作OF⊥CE于F,则∠COF=60°;
Rt△OCF中,OC=1,∠COF=60°;因此CF=;
∴CE=2CF=,即PC+PD的最小值为.
点评:此类题首先正确找到点P的位置,然后根据弧的度数发现特殊三角形,根据垂径定理以及勾股定理进行计算.