如图,直线AB过x轴上的点B(4,0),且与抛物线y=ax2交于A、C两点,已知A(2,2).(1)求直线AB的函数解析式;(2)求抛物线的函数解析式;(3)如果抛物

发布时间:2020-08-08 19:24:22

如图,直线AB过x轴上的点B(4,0),且与抛物线y=ax2交于A、C两点,已知A(2,2).
(1)求直线AB的函数解析式;
(2)求抛物线的函数解析式;
(3)如果抛物线上有点D,使S△OBD=S△OAC,求点D的坐标.

网友回答

解:(1)设直线表达式为y=ax+b,
∵A(2,2),B(4,0)都在y=ax+b的图象上,
∴,
∴,
∴直线AB的函数解析式为:y=-x+4,

(2)∵点A(2,2)在y=ax2的图象上,
∴a=,
∴抛物线的函数解析式为y=x2.

(3)∵,
解得:或,
∴点C的坐标为(-4,8),
设D(x,x2),
∴S△OBD=|OB|?|yD|=×4×?x2=x2.
∴S△AOC=S△BOC-S△OAB=×4×8-×4×2=16-4=12,
∵S△OBD=S△OAC,
∴x2=12,
∴x=±2,
∴D点坐标为(2,6)或(-2,6).
解析分析:(1)已知直线AB经过A(2,0),B(1,1),设直线表达式为y=ax+b,可求直线解析式;
(2)将A(2,2)代入抛物线y=ax2可求抛物线解析式;
(3)已知A,B,C三点坐标,根据作差法可求△OAC的面积,在△DOB中,已知面积和底OB,可求OB上的高,即D点纵坐标,代入抛物线解析式求横坐标,得出D点坐标.

点评:本题主要考查了一次函数、二次函数解析式的求法,要求会用点的坐标表示三角形的面积,从而求出符合条件的点的坐标,题目的综合性不小,难度不大.
以上问题属网友观点,不代表本站立场,仅供参考!