已知:如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直于AB于点F,交BC于点G,∠A=∠BCP.
(1)求证:PC是⊙O的切线;
(2)若点C在劣弧上运动,其他条件不变,问应再具备什么条件可使结论BG2=BF?BO成立?(要求画出示意图并说明理由)
(3)在满足问题(2)的条件下,你还能推出哪些形如BG2=BF?BO的正确结论?(要求:不再标注其他字母,找结论的过程中所作的辅助线不能出现在结论中,不写推理过程,写出不包括BG2=BF?BO的7个结论)
网友回答
(1)证明:连接OC
∵OA=OC
∴∠A=∠OCA
∵AB为直径
∴∠OCA+∠OCB=90°
∴∠OCP=∠BCP+∠OCB=90°
即PC是⊙O的切线.
(2)解:添加条件为:G为BC的中点.
连接OG
∵G为BC的中点
∴OG⊥BC又FG⊥BO
∴Rt△BFG∽Rt△BGO
∴
(3)解:①CG2=BF?BD
②EF2=AF?FB
③PC2=PD?PE
④PG2=PD?PE
⑤CG2=DG?GE
⑥DF2=AF?FB
⑦FG2=OF?FB
解析分析:(1)证PC是⊙O的切线,即证∠OCP=90°,而∠OCP=∠BCP+∠OCB=∠A+∠OBC,因为AB为直径,直径所对的圆周角为直角,即可证明.
(2)BG2=BF?BO要成立,Rt△BFG和Rt△BGO必须相似,而他们已经共用了一角B,所以如果相似,则必有∠BFG=∠BGO=90°,根据垂径定理,G点必在BC中点处.
(3)在(2)成立的前提下,只要找出一组组的相似三角形,就可以进行解答.
点评:此题主要考查了相似三角形的判定及切线判定的理解及运用.