如图,四边形ABCD中,AB=BC=2,CD=1,AD=,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.

发布时间:2020-08-11 09:41:58

如图,四边形ABCD中,AB=BC=2,CD=1,AD=,∠B=90°.
(1)判断∠D是否是直角,并说明理由.
(2)求四边形ABCD的面积.

网友回答

解:(1)连接AC,
∵∠B=90°
∴AC2=BA2+BC2=4+4=8,
∵DA2+CD2=()2+12=8,
∴AC2=DA2+DC2,
∴△ADC是直角三角形,即∠D是直角;

(2)∵S四边形ABCD=S△ABC+S△ADC,
∴S四边形ABCD=AB?BC+AD?CD=×2×2+××1=2+.
解析分析:(1)连接AC,根据勾股定理可知AC2=BA2+BC2,再根据AC2=DA2+DC2即可得出结论;
(2)根据S四边形ABCD=S△ABC+S△ADC即可得出结论.

点评:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!