若BE的延长线交AC于点F,且BF垂直于AC,垂足为F,如图,角BAC=45度,AB=AC,点D是BC的中点,点E在AD上求证:三角形AEF全等于三角形BCF
网友回答
【分析】:先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.
//-----------------------------------------分割线----------------------------------------------------------------
【解题】: 若BE的延长线交AC于点F,且BF垂直于AC,垂足为F,如图,角BAC=45度,AB=AC,点D是BC的中点,点E在AD上求证:三角形AEF全等于三角形BCF(图2)∵∠BAC=45°,BF⊥AF,
∴△ABF为等腰直角三角形,
∴AF=BF,
∵AB=AC,点D是BC的中点,
∴AD⊥BC,
∴∠EAF+∠C=90°,
∵BF⊥AC,
∴∠CBF+∠C=90°,
∴∠EAF=∠CBF,
在△AEF和△BCF中,
∠EAF=∠CBF
AF=BF
∠AFE=∠BFC=90°
∴△AEF≌△BCF(ASA).
//-----------------------------------------分割线----------------------------------------------------------------
【总结】:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,熟记三角形全等的判定方法与各性质是解题的关键.
//-----------