已知关于x的一元二次方程x2-2(m+1)x+m2-2m-3=0的两个不相等的实根中,有一个根是0,求m的值.

发布时间:2020-08-06 00:32:13

已知关于x的一元二次方程x2-2(m+1)x+m2-2m-3=0的两个不相等的实根中,有一个根是0,求m的值.

网友回答

解:∵x=0是原方程的根,
∴m2-2m-3=0.
解得m1=3,m2=-1.
又b2-4ac=[-2(m+1)]2-4(m2-2m-3)=16m+16.
∵方程有两个不等的实根,
∴b2-4ac>0,得16m+16>0,得m>-1.
故应舍去m=-1,得m=3为所求.

解析分析:首先解出一元二次方程,再利用b2-4ac=[-2(m+1)]2-4(m2-2m-3)=16m+16,得出m的取值范围,即可得出
以上问题属网友观点,不代表本站立场,仅供参考!