如图,抛物线y=-x2+x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).

发布时间:2020-08-09 06:32:50

如图,抛物线y=-x2+x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.
(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.

网友回答

解:(1)抛物线解析式为y=-x2+x-4,令y=0,
即-x2+x-4=0,解得x=1或x=5,∴A(1,0),B(5,0).
如答图1所示,分别延长AD与EM,交于点F.

∵AD⊥PC,BE⊥PC,∴AD∥BE,∴∠MAF=∠MBE.
在△AMF与△BME中,

∴△AMF≌△BME(ASA),
∴ME=MF,即点M为Rt△EDF斜边EF的中点,
∴MD=ME,即△MDE是等腰三角形.

(2)答:能.
抛物线解析式为y=-x2+x-4=-(x-3)2+,
∴对称轴是直线x=3,M(3,0);
令x=0,得y=-4,∴C(0,-4).
△MDE为等腰直角三角形,有3种可能的情形:
①若DE⊥EM,
由DE⊥BE,可知点E、M、B在一条直线上,
而点B、M在x轴上,因此点E必然在x轴上,
由DE⊥BE,可知点E只能与点O重合,即直线PC与y轴重合,
不符合题意,故此种情况不存在;
②若DE⊥DM,与①同理可知,此种情况不存在;
③若EM⊥DM,如答图2所示:

设直线PC与对称轴交于点N,
∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA.
在△ADM与△NEM中,

∴△ADM≌△NEM(ASA),
∴MN=MA.
抛物线解析式为y=-x2+x-4=-(x-3)2+,故对称轴是直线x=3,
∴M(3,0),MN=MA=2,
∴N(3,2).
设直线PC解析式为y=kx+b,∵点N(3,2),C(0,-4)在抛物线上,
∴,解得k=2,b=-4,∴y=2x-4.
将y=2x-4代入抛物线解析式得:2x-4=-x2+x-4,
解得:x=0或x=,
当x=0时,交点为点C;当x=时,y=2x-4=3.
∴P(,3).
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,3).

(3)答:能.
如答题3所示,设对称轴与直线PC交于点N.
与(2)同理,可知若△MDE为等腰直角三角形,直角顶点只能是点M.

∵MD⊥ME,MA⊥MN,∴∠DMN=∠EMB.
在△DMN与△EMB中,

∴△DMN≌△EMB(ASA),
∴MN=MB.
∴N(3,-2).
设直线PC解析式为y=kx+b,∵点N(3,-2),C(0,-4)在抛物线上,
∴,解得k=,b=-4,∴y=x-4.
将y=x-4代入抛物线解析式得:x-4=-x2+x-4,
解得:x=0或x=,
当x=0时,交点为点C;当x=时,y=x-4=.
∴P(,).
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,).
解析分析:(1)在抛物线解析式中,令y=0,解一元二次方程,可求得点A、点B的坐标;
如答图1所示,作辅助线,构造全等三角形△AMF≌△BME,得到点M为为Rt△EDF斜边EF的中点,从而得到MD=ME,问题得证;
(2)首先分析,若△MDE为等腰直角三角形,直角顶点只能是点M.如答图2所示,设直线PC与对称轴交于点N,首先证明△ADM≌△NEM,得到MN=AM,从而求得点N坐标为(3,2);其次利用点N、点C坐标,求出直线PC的解析式;最后联立直线PC与抛物线的解析式,求出点P的坐标.
(3)当点P是抛物线在x轴下方的一个动点时,解题思路与(2)完全相同.

点评:本题是二次函数综合题型,考查了二次函数与一次函数的图象与性质、待定系数法、全等三角形的判定与性质、等腰直角三角形、解方程等知识点,题目难度较大.第(2)(3)问均为存在型问题,且解题思路完全相同,可以互相借鉴印证.
以上问题属网友观点,不代表本站立场,仅供参考!