已知tana/1-tana=1,求下列各式的值:(1)sina-cosa/sina+cosa:(2)sin^2a+sinacosa+2:...已知tana/1-tana=1,求下列各式的值:(1)sina-cosa/sina+cosa:(2)sin^2a+sinacosa+2:
网友回答
tana=1-tana
则sina/cosa=tana=1/2
cosa=2sina
sin²a+cos²a=1
所以sin²a=1/5
sinacosa=2sin²a=2/5
所以(1)原式=(sina-2sina)/(sina+2sina)=-1/3
(2)原式=1/5+2/5+2=13/5
======以下答案可供参考======
供参考答案1:
首先tana=1/2
1)sina-cosa/sina+cosa分之分母同时除以cosa,得到
=tana-1/tana+1
=(1/2-1)/(1/2+1)
=(-1/2)/(3/2)
=-1/32)sin^2a+sinacosa+2
=1/5+2+sinacosa/sin^2a+cos^2a
=11/5+tana/tan^2a+1
=13/5供参考答案2:
tana=1-tana,2tana=1,tana=1/2,:
(1)(sina-cosa)/(sina+cosa)=(tana-1)/(tana+1)=-1/3,
(2)sin^2a+sinacosa+2=[sin^2a+sinacosa+2(sin^2a+cos^2a)]/(sin^2a+cos^2a)
=(3tan^2a+tana+2)/(1+tan^2a)=13/5
供参考答案3:
已知tana/1-tana=1
则tana=1/2
(1)原式=(tana-1)/(tana+1)=(-1/2)/(3/2)=-1/3
(2)原式=cos^2a*(tan^2a+tana)+2
=[tan^2a+tana]/[tan^2a+1]+2
=[(1/2)^2+1/2]/[(1/2)^2+1]+2
=(3/4)/(5/4)+2
=13/5供参考答案4:
tana/(1-tana)=1
tana=1/2(sina-cosa)/(sina+cosa)=(tana-1)/(tana+1)=(1/2-1)/(1/2+1)
=-1/3sin^2a+sinacosa+2
=(sin^2a+sinacosa)/(Sin^2a+cos^2a)+2=[(tana)^2+tana]/[(tana)^2+1] +2 代入=3/5+2=13/5