若sinα+cosα=根号2(1)求sin3α+cos3α(2)tanα+cotα
网友回答
sinα+cosα=根号2
√2 sin(α+π/4)=√2
sin(α+π/4)=1
(α+π/4)=2kπ+π/2
所以α=2kπ+π/4
sin3α+cos3α
=√2 sin(3α+π/4)
=√2sin(6kπ+3π/4+π/4)
=√2sin(6kπ+π)
=√2×0=0(2)tanα+cotα
=tan(2kπ+π/4)+cot(2kπ+π/4)
=1+1=2======以下答案可供参考======
供参考答案1:
sinα+cosα=√2
(sinα+cosα)²=(√2)²
1+2sinacosa=2
sinacosa=1/2
于是(1)sin³α+cos³α
=(sinα+cosα)(sin²α-sinαcosα+cos²α)
=√2x(1-sinαcosα)
=√2x(1-1/2)
=√2/2(2)tanα+cotα
=sinα/cosα+cosα/sinα
=(sin²α+cos²α)/sinαcosα
=1/sinαcosα
=1/(1/2)
=2