如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.
(Ⅰ)已知平面β内有一点P′(2,2),则点P′在平面α内的射影P的坐标为________;
(Ⅱ)已知平面β内的曲线C′的方程是(x′-)2+2y2-2=0,则曲线C′在平面α内的射影C的方程是________.
网友回答
(2,2) (x-1)2+y2=1
解析分析:(I)根据两个坐标系之间的关系,由题意知点P′在平面上的射影P距离x轴的距离不变是2,距离y轴的距离变成2cos45°,写出坐标.(II)设出所给的图形上的任意一点的坐标,根据两坐标系之间的坐标关系,写出这点的对应的点,根据所设的点满足所给的方程,代入求出方程.
解答:(I)由题意知点P′在平面上的射影P距离x轴的距离不变是2,距离y轴的距离变成2cos45°=2,∴点P′在平面α内的射影P的坐标为(2,2)(II)设(x′-)2+2y2-2=0上的任意点为A(x0,y0),A在平面α上的射影是(x,y)根据上一问的结果,得到x=x0,y=y0,∵,∴∴(x-1)2+y2=1,故