已知一元二次方程x2-5x+k=0.
(1)当k=6时,解这个方程;
(2)若方程x2-5x+k=0有两个不相等的实数根,求k的取值范围;
(3)设此方程的两个实数根分别为x1,x2,且2x1-x2=2,求k的值.
网友回答
解:(1)k=6,方程变为x2-5x+6=0,即(x-2)(x-3)=0,
∴x1=2,x2=3;
(2)根据题意△=(-5)2-4k>0,解得k<;
(3)根据题意得x1+x2=5,x1,?x2=k,
而2x1-x2=2,
∴x1=,
∴x2=,
∴k=×=.
解析分析:(1)利用因式分解法解方程x2-5x+6=0;
(2)根据根的判别式的意义得到△=(-5)2-4k>0,然后解不等式得到k<;
(3)根据根与系数的关系得到x1+x2=5,x1,?x2=k,而2x1-x2=2,易求得x1=,x2=,则k=×=.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.