在菱形ABCD中,AB∥CD,AD∥BC,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折,翻折后AB边交CD于F,CF=1,则四边形AECF的面积是________.
网友回答
1+
解析分析:延长AF交BC的延长线于G,根据折叠的性质知:∠B=∠G=∠FCG=45°,因此△CFG是等腰直角三角形,且CG=;连接AC,由于四边形ABCD是菱形,那么∠ACF=∠ACE,即可证得Rt△AEC≌Rt△AFC,得CE=CF=1,由此可求得EG的长,即AE、BE的长,那么△AEG、△CFG的面积差即为阴影部分的面积.
解答:解:如图,延长AF交BC的延长线于G,连接AC;
由折叠的性质知:AB=AG,∠B=∠G=45°,BE=EG;
由于四边形ABCD是菱形,则∠FCG=∠G=45°,
即△FCG是等腰直角三角形,则CF=FG=1,CG=;
∵∠AFC=∠AEC=90°,∠ACF=∠DAC=∠ACE,AC=AC,
∴△AEC≌△AFC,得CE=CF=1,即EG=AE=1+;
∴S阴影=S△AEG-S△CFG=EG2-CF2=(1+)2-=1+,
即阴影部分的面积是1+.
故