如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC

发布时间:2020-08-09 02:32:17

如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.

网友回答

证明:(1)∵DE∥AB,AE∥BC,
∴四边形ABDE是平行四边形,
∴AE∥BD,且AE=BD
又∵AD是BC边的中线,
∴BD=CD,
∴AE=CD,
∵AE∥CD,且AE=CD
∴四边形ADCE是平行四边形,
∴AD=EC;

(2)∵∠BAC=90°,AD是斜边BC上的中线,
∴AD=BD=CD
又∵四边形ADCE是平行四边形
∴四边形ADCE是菱形.
解析分析:(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形,即得AD=CE;
(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;

点评:本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.
以上问题属网友观点,不代表本站立场,仅供参考!