已知:如图,在△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.(Ⅰ)求证:BD与⊙O相切;(Ⅱ)若

发布时间:2020-08-12 06:58:07

已知:如图,在△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(Ⅰ)求证:BD与⊙O相切;
(Ⅱ)若AD:AO=8:5,BC=2,求BD的长.

网友回答

(1)证明:连接OD.
∵OA=OD,
∴∠A=∠ADO.
∵∠C=90°,
∴∠CBD+∠CDB=90°.
∵∠CBD=∠A,
∴∠CDB+∠ADO=90°,
∴∠ODB=90°,
∴BD与⊙O相切;

(2)解:连接DE,
∵AE是⊙O的直径,
∴∠ADE=90°.
∵∠CBD=∠A,∠ADE=∠C,
∴△ADE∽△BCD,
∴AD:AE=BC:BD.
∵AD:AO=8:5,
∴AD:AE=8:10.
∴8:10=2:BD,
∴BD=2.5.
解析分析:(1)连接OD,证明OD⊥BD.转证∠ADO+∠CDB=90°.因为∠ADO=∠A=∠CBD,∠CBD+∠CDB=90°,所以得证;
(2)AD:AO=8:5,则AD:AE=8:10.证明△BCD∽△ADE,得对应边成比例求解.

点评:此题考查切线的判定和相似三角形的判定及性质,属常规题,难度不大.
以上问题属网友观点,不代表本站立场,仅供参考!