如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,若△COD为直角三角形,则∠E的度数为________°.
网友回答
22.5
解析分析:由于AB是⊙O的直径,则AB=2DO,而AB=2DE,可得DO=DE,根据等腰三角形的性质得到∠DOE=∠E,又由于△COD为直角三角形,而OC=OD,所以△COD为等腰直角三角形,
于是可得∠CDO=45°,利用三角形外角性质有∠CDO=∠DOE+∠E,则∠E=∠CDO=22.5°.
解答:∵AB是⊙O的直径,
∵AB=2DO,
而AB=2DE,
∴DO=DE,
∴∠DOE=∠E,
∵△COD为直角三角形,
而OC=OD,
∴△COD为等腰直角三角形,
∴∠CDO=45°,
∵∠CDO=∠DOE+∠E,
∴∠E=∠CDO=22.5°.
故