如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;(2)经探

发布时间:2020-08-08 19:37:03

如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.
(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.

网友回答

解:(1)∵y=mx2-2mx-3m=m(x2-2x-3)=m(x-1)2-4m,
∴抛物线顶点M的坐标为(1,-4m);
∵抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,
∴当y=0时,mx2-2mx-3m=0,
∵m>0,
∴x2-2x-3=0;
解得x1=-1,x2=3,
∴A、B两点的坐标为(-1,0)、(3,0).

(2)当x=0时,y=-3m,
∴点C的坐标为(0,-3m).
∴.
过点M作MD⊥x轴于点D,则OD=1,BD=OB-OD=2,
MD=|-4m|=4m.
∴S△BCM=S△BDM+S梯形OCMD-S△OBC
=
=
=3m.
∴S△BCM:S△ABC=1:2,
以上问题属网友观点,不代表本站立场,仅供参考!