如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构

发布时间:2020-08-07 12:31:46

如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为________cm.

网友回答


解析分析:根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.

解答:∵在Rt△ABC中,∠B=30°,AB=10cm,
∴AC=AB=5cm.
根据旋转的性质知,A′C=AC,
∴A′C=AB=5cm,
∴点A′是斜边AB的中点,
∴AA′=AB=5cm,
∴AA′=A′C=AC,
∴∠A′CA=60°,
∴CA′旋转所构成的扇形的弧长为:=(cm).
以上问题属网友观点,不代表本站立场,仅供参考!