(1)教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角

发布时间:2020-08-09 22:03:35

(1)教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.

(2)试用勾股定理解决以下问题:
如果直角三角形ABC的两直角边长为3和4,则斜边上的高为______
(3)试构造一个图形,使它的面积能够解释(a-2b)2=a2-4ab+4b2,画在下面的网格中,并标出字母a、b所表示的线段.

网友回答

解:(1)梯形ABCD的面积为(a+b)(a+b)=a2+ab+b2,
也利用表示为ab+c2+ab,
∴a2+ab+b2=ab+c2+ab,即a2+b2=c2;

(2)∵直角三角形的两直角边分别为3,4,
∴斜边为5,
∵设斜边上的高为h,直角三角形的面积为×3×4=×5×h,
∴h=;

(3)∵图形面积为:(a-2b)2=a2-4ab+4b2,
∴边长为a-2b,
由此可画出的图形为:

以上问题属网友观点,不代表本站立场,仅供参考!