如图1,在△ABC中,AB=k?AC,∠BAC+∠DAE=180°,AD=k?AE.
探索△AEB与△ACD面积之间的数量关系,并写出你的解答过程.
说明:如果你反复探索没有解决问题,可以选取(1)或(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为5分.
(1)k=1,∠BAC=90°(如图2);
(2)k=1,∠BAC=120°,且B、A、D三点共线(如图3).
网友回答
证明:结论:△ABE的面积等于△ACD的面积
过点E作EF⊥BA延长线于F,过点D作DG⊥AC于G,
∴∠AFE=∠AGD=90°,
∵∠BAC+∠DAE=180°,
∴∠2+∠BAE=180°,
又∵∠1+∠BAE=180°,
∴∠1=∠2,
∴△AFE∽△AGD,
∴,
∵AD=k?AE,
∴DG=k?EF,
∵,,
∵AB=k?AC,
∴S△ABE=S△ACD.
解析分析:要求两个三角形的面积关系,首先要作出两个三角形的高,利用两角相等,得到相似三角形,根据对应边成比例得到关于高的关系式,代入三角形的面积公式可得