如图,已知∠DAB+∠ABC+∠BCE=360°.
(1)说明AD与CE的位置关系,并说明理由;
(2)求证:∠ABC=∠BAH+∠BCG.
网友回答
解:(1)过点B作BF∥CE,
则∠BCE+∠CBF=180°,
∵∠DAB+∠ABC+∠BCE=360°,
∴∠BAD+∠ABF=180°,
∴AD∥BF,
∴AD∥CE;
(2)∵BF∥CE,
∴∠BCG=∠CBF,
∵AD∥BF,
∴∠BAH=∠ABF,
∴∠CBF+∠ABF=∠BCG+∠BAH,
∴∠ABC=∠BAH+∠BCG.
解析分析:(1)过点B作BF∥CE,根据∠BCE+∠CBF=180°,∠DAB+∠ABC+∠BCE=360°,得出∠BAD+∠ABF=180°,AD∥BF,即可得出