怎么样用空间向量证明在长方体ABCD-A1B1C1D1中G是三角形ACD1的重心,求证:D、G、B1

发布时间:2021-03-08 22:53:37

怎么样用空间向量证明在长方体ABCD-A1B1C1D1中G是三角形ACD1的重心,求证:D、G、B1三点在同一直线上

网友回答

证明:建立空间直角坐标系O-XYZ
设A(0,0,0)C(b,a,0) D1(0,a,c) D(0,a,0) B1(b,0,c)
由三角形重心坐标公式可得G(b/3,2a/3,c/3)
向量GD(-b/3,a/3,-c/3) 向量B1G(-2b/3,2a/3,-2c/3)
向量B1G=2向量GD,因此D,G,B1三点共线.
证毕
以上问题属网友观点,不代表本站立场,仅供参考!