以边长为a的正方形ABCD的对角线AC长为半径,以点A为圆心作弧交AB边的延长线于点E,交AD边的延长线于点F,得扇形AECF,把扇形AECF的面积称为正方形ABCD

发布时间:2020-08-10 07:08:13

以边长为a的正方形ABCD的对角线AC长为半径,以点A为圆心作弧交AB边的延长线于点E,交AD边的延长线于点F,得扇形AECF,把扇形AECF的面积称为正方形ABCD面积的扩展;再以线段AE为一边作正方形AEGH,以对角线AG的长为半径,点A为圆心画弧交AE边的延长线于点M,交AH边的延长线于点N,得扇形AMGN,则扇形AMGN的面积是正方形AEGH面积的扩展,按此法依次进行到如图所示,叫做正方形ABCD面积的第一次扩展.按这种方法可进行第二次扩展,直到第n次扩展
(1)求第一次扩展中各扇形面积之和S1;
(2)求第二次扩展中各扇形面积之和S2(第二次扩展的第一个正方形是以第一次扩展的最后一个扇形半径为边长的正方形);
(3)求第n次扩展中各扇形面积之和Sn.

网友回答

解:(1)根据勾股定理可知半径为a;
第一次扩展半径为2a;
第三次扩展的半径为2a;
第四次为4a;
根据扇形面积可知第一次扩展中各扇形面积之和
S1=+++=a2π.

(2)第二次扩展中各扇形的半径分别是a,8a,a,16a,
根据扇形面积可得第二次扩展中各扇形面积之和
S2=+++=120πa2.

(3)从第一次和第二次中要找到规律,
第二次是第一次的16倍,
所以第三次就是16的2倍,即162-1,
第n次就是16n-1.
所以第n次扩展中各扇形面积之和Sn=16n-1πa2.
解析分析:(1)根据扇形的面积公式和勾股定理可计算出扇形的面积;
(2)分别计算出各扇形的半径,利用扇形面积公式计算;
(3)从第一次和第二次中要找到规律,第二次是第一次的16倍,所以第三次就是16的2倍,即162-1,
第n次就是16n-1.

点评:在第一二次中主要是根据扇形的面积公式计算,在第三次中却要从第一次和第二次中找到规律进行计算.
以上问题属网友观点,不代表本站立场,仅供参考!