如图,AB为⊙O的直径,点C是⊙O上一点,AD平分∠CAB交⊙O于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若AC=3,DE=2,求AD的长

发布时间:2020-08-11 07:16:56

如图,AB为⊙O的直径,点C是⊙O上一点,AD平分∠CAB交⊙O于点D,过点D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若AC=3,DE=2,求AD的长.

网友回答

(1)证明:连接OD,
∵AD为∠EAB的平分线,
∴∠EAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ODA,
∴∠EAD=∠ODA,
∴OD∥AE,
∵AE⊥ED,
∴OD⊥DE,
则DE为圆O的切线;
(2)∵DE为圆的切线,AE为圆的割线,
∴DE2=EC?EA=EC?(EC+AC),
∵AC=3,DE=2,
∴4=EC(EC+3),即EC2+3EC-4=0,即(EC-1)(EC+4)=0,
解得:EC=1,
则AE=AC+CE=3+1=4,
在Rt△AED中,AE=4,DE=2,
根据勾股定理得:AD=2.
解析分析:(1)连接OD,由AD为角平分线得到一对角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OD与AE平行,由AE垂直于ED得到OD垂直于DE,即可得证;
(2)由ED为圆的切线,EA为圆的割线,利用切割线定理列出关系式,将AC与DE长代入求出EC的长,进而求出AE的长,在直角三角形AED中,利用勾股定理即可求出AD的长.

点评:此题考查了切线的判定,切割线定理,平行线的判定与性质,熟练掌握切线的判定方法是解本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!