定义在R上奇函数f(x),当x<0时的解析式为f(x)=-ln(-x)+x+2,若该函数有一零点为x0,且x0∈(n,n+1),n为正整数,则n的值为________.
网友回答
1
解析分析:由函数是奇函数,可得x>0的表达式,然后利用根的存在性定理进行判断.
解答:设x>0,则-x<0,所以f(-x)=-lnx-x+2,
因为函数为奇函数,所以f(-x)=-lnx-x+2=-f(x),
所以f(x)=lnx+x-2.
因为f(1)=ln1+1-2=-1<0,f(2)=ln2+2-2=ln2>0,所以在(1,2)内存在一个零点,
所以n=1.
故