已知反比例函数y=(k<0)的图象经过点M(m,m-4).(1)求m的取值范围;(2)点A(1,a),B(3,b),C(c,-2)也在上述图象上,试比较a、b、c的大

发布时间:2020-08-08 14:51:19

已知反比例函数y=(k<0)的图象经过点M(m,m-4).
(1)求m的取值范围;
(2)点A(1,a),B(3,b),C(c,-2)也在上述图象上,试比较a、b、c的大小(直接写出结果).

网友回答

解:(1)∵反比例函数的y=的k<0,
∴该函数图象经过第二、四象限.
①当m<0时,m-4>0,得到k=m(m-4)>0,这与k<0相矛盾,所以m<0舍去;
②当m>0时,m-4<0,解得0<m<4,
综上所述,m的取值范围是0<m<4.

(2)依题意,得
a=k,b=,-2=即c=-.
∵k<0,
∴->>k,即c>b>a.
解析分析:(1)根据函数图象所在的象限来求确定m的值;
(2)根据反比例函数图象上点的坐标特征,把点A、B、C的坐标分别代入已知函数解析式,分别求得a、b、c的中,然后比较它们的大小.

点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.
以上问题属网友观点,不代表本站立场,仅供参考!