如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=12cm.点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,若一个点到

发布时间:2020-08-11 08:19:08

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=12cm.点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,若一个点到达目的停止运动时,另一点也随之停止运动.运动时间为t秒;
(1)用含有t的代数式表示BQ、CP的长;
(2)写出t的取值范围;
(3)用含有t的代数式表示Rt△PCQ和四边形APQB的面积;
(4)当P、Q处在什么位置时,四边形PQBA的面积最小,并求这个最小值.

网友回答

解:(1)t时刻时,
∵点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,
∴CP=t,BQ=2t,
即用含有t的代数式表示BQ、CP的长为:BQ=2t,CP=t.

(2)∵点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,
∴Q的速度是P的两倍,
∵2AC<BC,
∴可知P先到达A点,
且t==4.
∵若一个点到达目的停止运动时,另一点也随之停止运动,
∴t的取值范围是:0≤t≤4.

(3)由(1)得BQ=2t,CP=t,且BC=12cm,
∴CQ=12-2t,
∴Rt△PCQ的面积为==t(6-t),
∵Rt△ABC的面积为=24,
∴四边形APQB的面积=Rt△ABC的面积-Rt△PCQ的面积=24-t(6-t).

(4)由(3)得四边形APQB的面积为24-t(6-t),
变形为t2-6t+24=(t-3)2+15,
根据二次函数的性质可知,当t=-=3时,取得最小值,解为15.
即CP=3cm,BQ=6cm时面积最小,最小为15cm2.
解析分析:(1)有时间和速度,根据路程=时间×速度,可以列出方程式.
(2)根据题意2AC<BC,找到P点到达A的时间极为t的最大值,即可得出
以上问题属网友观点,不代表本站立场,仅供参考!