解方程:
(1)3x2+5(2x+1)=0;
(2)3(x-5)2=2(5-x)
网友回答
(1)解:3x2+5(2x+1)=0,
即3x2+10x+5=0,
b2-4ac=102-4×3×5=40,
∴x=,
即x1=,x2=-.
(2)解:3(x-5)2=2(5-x),
移项得:3(x-5)2+2(x-5)=0,
分解因式得:(x-5)(3x-15+2)=0,
∴x-5=0,3x-15+2=0,
解得:x1=5,x2=.
解析分析:(1)求出b2-4ac的值,代入公式 x=进行计算即可.(2)移项后分解因式得到(x-5)(3x-15+2)=0,推出方程x-5=0,3x-15+2=0,求出方程的解即可.
点评:本题主要考查对解一元一次方程,等式的性质,解一元二次方程等知识点的理解和掌握,能选择适当的方法解一元二次方程是解此题的关键.