已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数如果存在,求出

发布时间:2020-08-05 12:19:18

已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数如果存在,求出a的值;如果不存在,说明理由.
解:(1)根据题意,得△=(2a-1)2-4a2>0,解得a<.
∴当a<时,方程有两个不相等的实数根.
(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-=0??①,
解得a=,经检验,a=是方程①的根.
∴当a=时,方程的两个实数根x1与x2互为相反数.
上述解答过程是否有错误?如果有,请指出错误之处,并解答.

网友回答

解:上述解答有错误.
(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,
∴a2≠0且满足△=(2a-1)2-4a2>0,
∴a<且a≠0;

(2)不存在这样的a.
∵方程的两个实数根x1,x2互为相反数,
则x1+x2=-=0,
解得a=,
经检验a=是方程的根.
∵(1)中求得方程有两个不相等实数根,
a的取值范围是a<且a≠0,
而a=>(不符合题意).
所以不存在这样的a值,使方程的两个实数根互为相反数.

解析分析:(1)根据题意,应满足两个条件:△>0,二次项系数不等于0,显然此解答漏掉了一个条件;
(2)利用根与系数的关系求得字母的值后,还要注意检验原方程是否有实数根.

点评:注意:只要是一元二次方程或说方程有两个实数根,则二次项系数不得为0;凡是利用根与系数的关系求得未知字母的值时,一定要注意代入原方程,看是否有实数根.
以上问题属网友观点,不代表本站立场,仅供参考!