阅读理解:条件:如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+AB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则P

发布时间:2020-08-08 13:10:47

阅读理解:
条件:
如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+AB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.
应用:
(1)如图2,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,连接ED交AC于P,则PB+PE的最小值是______;
(2)如图3,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是______.

网友回答

解:(1)由所给的例子可知,PB+PE的最小值是DE的长,
∵正方形ABCD的边长为2,E为AB的中点,
∴AE=1,
在Rt△ADE中,
DE===.
以上问题属网友观点,不代表本站立场,仅供参考!